Delivery errors detectability with IQM, a system for real-time monitoring of radiotherapy treatments

Livia Marrazzo¹, Chiara Arilli¹, Marta Casati¹, Silvia Calusi ², Cinzia Talamonti¹,², Luca Fedeli², Gabriele Simontacchi³, Lorenzo Livi²,³, Stefania Pallotta¹,²

¹ Medical Physics Unit AOU Careggi, Florence, Italy
² University of Florence, Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, Florence, Italy
³ Radiotherapy Unit AOU Careggi, Florence, Italy
What is IQM (Integral Quality Monitor)?

- **Large area ionization chamber** with a gradient in the electrode plate separation (in the axis of MLC motion)
- **Inclinometer** for gantry and collimator angle measurement
- **Wireless** connection

Monitoring the **accuracy** of the beam delivery as well as the **integrity** of the treatment data transfer from the TPS to the linac *w/o any user interaction.*
Device characterization

Short term repeatability

Gantry angle 0°
50 MU per field
17 4x4 cm² fields
1 10x10 cm² field

<table>
<thead>
<tr>
<th>Repeatability</th>
<th>Short term σ/M (%)</th>
<th>Long term σ/M (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test</td>
<td>Test</td>
</tr>
<tr>
<td>Global</td>
<td>0.08</td>
<td>0.96</td>
</tr>
<tr>
<td>Local (mean±σ)</td>
<td>0.15±0.09</td>
<td>0.15±0.17</td>
</tr>
</tbody>
</table>

Long term repeatability

Gantry angle 0°
50 MU per field
17 4x4 cm² fields
1 10x10 cm² field

Prostate step and shoot IMRT
5 beams
255°, 315°, 45°, 105°, 180°
10 segments per beam

H&N step and shoot IMRT
4 beams
240°, 320°, 0°, 80°
10 segments per beam

Dose rate dependence

<0.5% @6MV and @10MV 20-400 MU/min
IQM output

Segment-by-Segment

- Watch level: 5%
- Action level: 15%

Cumulative

- Watch level: 5%
- Action level: 15%
Objectives

- To test the IQM ability of detecting small delivery errors
- To evaluate the correlation between the changes in the detector output signal induced by small delivery errors with other metrics, such as the γ passing rate and the DVH variations
How did we do it?

- Delivered MUs (1, 2, 3 MU per beam)
 0.8% - 2.5% (H&N), 1.4% - 4.2% (prostate), 0.4% - 1.3% (APBI)

- Small deviations in leaf bank positions
 (1 mm single or both banks in different directions)
Results

IQM sensitivity in detecting small delivery errors
Results

Correlation with 2D gamma (1%/1mm, 10% th, local approach)

\[
\begin{array}{|c|c|c|}
\hline
\text{Pearson's } r & \text{Adj. R-Square} & p \\
\hline
-0.85333 & 0.7262 & <0.01 \\
\hline
\end{array}
\]
Results

Correlation with PTV D95

\[y = 0.6287x + 0.0008 \]

\[R^2 = 0.9133 \]

<table>
<thead>
<tr>
<th>Pearson's r</th>
<th>Adj. R-Square</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95567</td>
<td>0.90953</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Results

Correlation with OAR (rectum for the prostate plan)

<table>
<thead>
<tr>
<th></th>
<th>Pearson's r</th>
<th>Adj. R-Square</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectum V50</td>
<td>0.95528</td>
<td>0.89508</td>
<td><0.01</td>
</tr>
<tr>
<td>Rectum V70</td>
<td>0.99468</td>
<td>0.98726</td>
<td><0.01</td>
</tr>
</tbody>
</table>

\[
y = 1.8006x - 0.0104 \\
R^2 = 0.91255
\]

\[
y = 4.6182x + 0.0077 \\
R^2 = 0.98938
\]
Conclusions

IQM is capable of detecting small delivery errors in MU and leaves position and it shows a sufficient sensitivity for clinical practice.

IQM exhibits a good correlation with other metrics used to quantify the deviations between calculated and actually delivered dose distributions. Such correlations are useful in order to identify the alert threshold associated with this kind of monitoring systems.

Further work will include the system response to combined errors.
Thank you for your attention