Online quality assurance of external beam radiation therapy with an integrated quality monitoring system

David Hoffman, Ph.D.
University of California, Davis
Resident Physicist
July, 2015
Integral Quality Monitor (IQM)

- Large area ion chamber
- iRT Systems GmbH (Koblenz, Germany)
- Attaches to the accessory tray
- Online checksum QA for photon beams
Overview

- Evaluate the stability and accuracy of each feature of the IQM.
- Determine much medical physics work is needed to bring the IQM into a clinic.
- Quantify how sensitive is the device to beam delivery errors.
Chamber Characteristics

- Ion chamber thickness gradient in the axis of MLC motion
- Inclinometer for gantry and collimator angle measurement
- Wireless connection
Effect on Photon Beams

- Attenuation of photon beams:
 - 6 MV - 5.43 ± 0.02%
 - 10 MV - 4.60 ± 0.02%
 - 15 MV - 4.21 ± 0.03%
- Symmetry and flatness is unchanged
- Beam profiles agree with within 1% outside of the penumbra
- Presence of the IQM can be accounted for with a tray factor
Ion chamber evaluation

- Simple photon beam measurements
 - Reproducibility (SD = 0.14%)
 - Stability over 4 weeks (SD = 0.47%)
- Linear dependence on MU ($R^2 = 1$)
- Initial dose rate dependence (3-4%)
- Faster capacitor resulted in minimal dependence
Further evaluation

- IQM thermometer agreed to the calibrated thermometer to within 1.0 ± 0.7°C
- IQM barometer agreed to the mercury barometer to within 2.3 ± 0.4 mmHg
- IQM inclinometer agreed with the spirit level for gantry:
 - 0 and 180 degrees within 0.03 ± 0.01 degrees
 - 90 and 270 degrees within 0.27 ± 0.03 degrees
- For the collimator angle measurement, the IQM inclinometer agreed with the plum-bob within 0.3 ± 0.2 degrees with the gantry at 90 degrees.
- No Collimator angle readout when the gantry is within ~5 degrees of 0 or 180 degrees
Simulated errors

- Modifications to the photon beams results in changed ion chamber response
- Simulated errors were detected in 6 MV $10 \times 10 \text{ cm}^2$ photon beam
- Twice the SD of the stability (1%) of the measurement was considered a “detected” error

<table>
<thead>
<tr>
<th>Modification</th>
<th>% signal change</th>
<th>Magnitude of modification for 1% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% decreased MU</td>
<td>-0.99 ± 0.01%</td>
<td>-</td>
</tr>
<tr>
<td>1% increased MU</td>
<td>1.00 ± 0.03%</td>
<td>-</td>
</tr>
<tr>
<td>1 mm single MLC leaf into field</td>
<td>-0.05 ± 0.01%</td>
<td>13 mm</td>
</tr>
<tr>
<td>1 mm single MLC leaf out of field</td>
<td>0.01 ± 0.01%</td>
<td>25 mm</td>
</tr>
<tr>
<td>1 mm field shift in MLC motion axis</td>
<td>0.42 ± 0.06%</td>
<td>3 mm</td>
</tr>
<tr>
<td>1 mm field shift in MLC non-motion axis</td>
<td>0.20 ± 0.13%</td>
<td>Not sensitive</td>
</tr>
<tr>
<td>Incorrect energy (10 MV)</td>
<td>0.8 ± 0.02%</td>
<td>-</td>
</tr>
<tr>
<td>Incorrect energy (15 MV)</td>
<td>2.85 ± 0.01%</td>
<td>-</td>
</tr>
</tbody>
</table>
Small fields

- The IQM does not have a finite detector size
- For small fields (SBRT), this changes the detectable errors
- Simulated errors were detected in 6 MV 1×1 cm2 photon beam

<table>
<thead>
<tr>
<th>Modification</th>
<th>% signal change</th>
<th>Magnitude of modification for 1% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% decreased MU</td>
<td>-1.1 ± 0.4%</td>
<td>-</td>
</tr>
<tr>
<td>1% increased MU</td>
<td>1.02 ± 0.3%</td>
<td>-</td>
</tr>
<tr>
<td>1 mm single MLC leaf into field</td>
<td>-0.7 ± 0.2%</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>1 mm single MLC leaf out of field</td>
<td>0.5 ± 0.3%</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>1 mm field shift in MLC motion axis</td>
<td>0.1 ± 0.3%</td>
<td>4 mm</td>
</tr>
<tr>
<td>1 mm field shift in MLC non-motion axis</td>
<td>0.6 ± 0.4%</td>
<td>Not sensitive</td>
</tr>
<tr>
<td>Incorrect energy (10 MV)</td>
<td>8.5 ± 0.3%</td>
<td>-</td>
</tr>
<tr>
<td>Incorrect energy (15 MV)</td>
<td>15.1 ± 0.3%</td>
<td>-</td>
</tr>
</tbody>
</table>
VMAT evaluation

- Two VMAT prostate plans were repeatedly measured
- IQM ion chamber measurement SD = 0.16%
Ongoing investigation

- IQM measurement in further applications:
 - Conventional 3D
 - IMRT
 - VMAT
 - SBRT
 - High dose rate
- Evaluation of treatment error detection sensitivity
Conclusions

The IQM demonstrated:
- Valid temperature and pressure correction
- Useful gantry and collimator angle readings
- Valid and reproducible photon beam measurements
- Sensitivity to simulated beam delivery errors
- Useful for online patient quality assurance
- Implementation does not require re-commissioning of the treatment beams