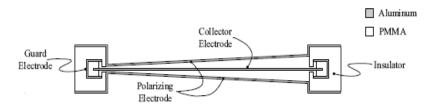

Efficient and Enhanced QA Testing of Linear Accelerators using a Real-time Beam Monitor

Andrew Jongho Jung Princess Margaret Cancer Centre Toronto, Canada


Integral Quality Monitor (IQM)

- Independent beam monitoring system
- Segment-by-segment monitoring by comparison with calculation or reference measurement

Integral Quality Monitor (IQM)

- Consists of large area ionchamber
- ▶ 1D sensitivity gradient
 → Check beam aperture is at right location

Integral Quality Monitor (IQM)

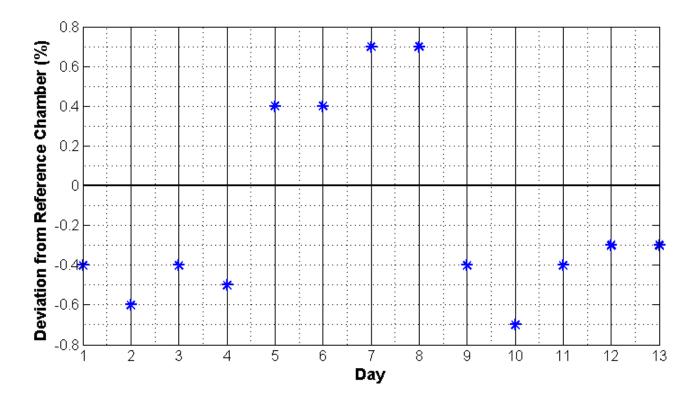
- Attached to Linac head to monitor beam delivery
- Potentially used for some of the required QA of the Linac

- Beam Output
- Beam Symmetry
- Relative Dose Factor (RDF)
- MLC Calibration
- Output as Function of Dose Rate
- Dose Linearity
- Output as Function of Gantry Angles

Beam Output– Conventional Method

Conventionally done using Farmer-type ion-chamber or 2D detector system

Beam Output – Using IQM

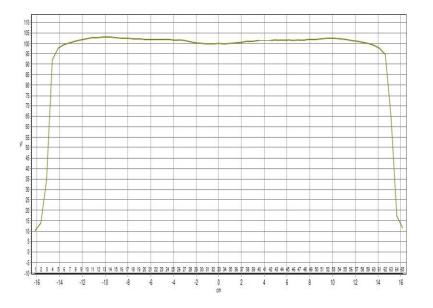

- Check the deviation from reference
 - Temperature and pressure corrected
- Concurrent reference Farmer-type chamber measurement

IQM Beam Output Results

 Deviation of IQM measurement from Farmer-type chamber

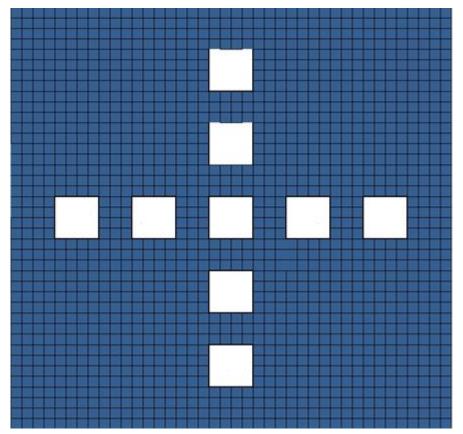
*for 13 different days over a period of 2 months

Beam Output


Beam Symmetry

- Relative Dose Factor (RDF)
- MLC Calibration
- Output as Function of Dose Rate
- Dose Linearity
- Output as Function of Gantry Angles

Beam Symmetry – Conventional Method


D detector array system

Beam Symmetry – Using IQM

Off-axis square field measurements

Beam Symmetry – Using IQM

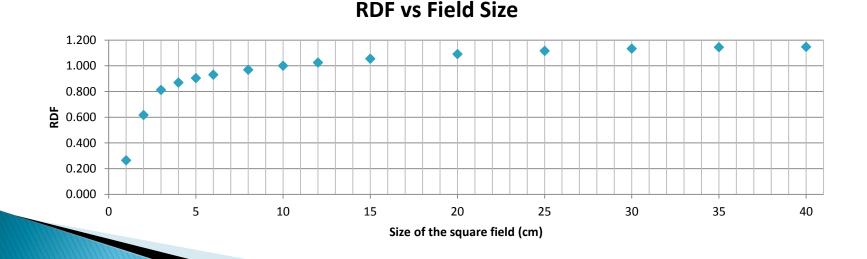
IQM Symmetry Parameter:

 $\frac{Measurement_{+d} - Measurement_{-d}}{Measurement_{central}} \times 100\%$

- The parameter changes as beam symmetry changes
- Constancy parameter, not representing real symmetry value

Beam Symmetry – Using IQM

- Parameters for 3% beam symmetry compared to baseline (< 0.3% symmetry)
- Margin of error[∗] of the parameters is 0.5%
 → Sensitive for difference greater than 1%

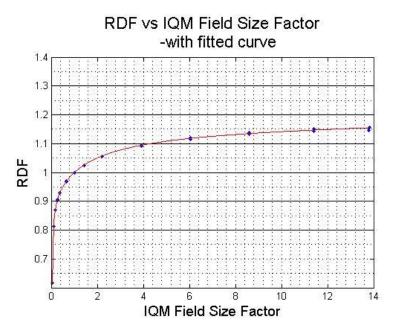

	Gradient			Non-Gradient		
Off-axis distance (cm)	3% (%)	Baseline (%)	Difference (%)	3% (%)	No tilt (%)	Baseline (%)
9	-46.4	-44.0	-2.4	2.0	0.3	1.7
12	-61.2	-59.0	-2.2	2.5	0.4	2.1
15	-70.4	-68.0	-2.4	2.4	0.7	1.7

*2 standard deviation

- Beam Output
- Beam Symmetry
- Relative Dose Factor (RDF)
- MLC Calibration
- Output as Function of Dose Rate
- Dose Linearity
- Output as Function of Gantry Angles

Relative Dose Factor (RDF) – Conventional Method

- Farmer type ion-chamber inserted inside solid water block
- Constancy check of square fields measurement from 1 x 1cm² to 40 x 40cm²



Relative Dose Factor – Using IQM

- Measure square fields from 1 x 1cm² to 40 x 40cm² using IQM
- Normalize with respect to 10 x 10cm² measurement
 → IQM Field Size Factor
- Measure RDF and IQM Field Size Factor concurrently

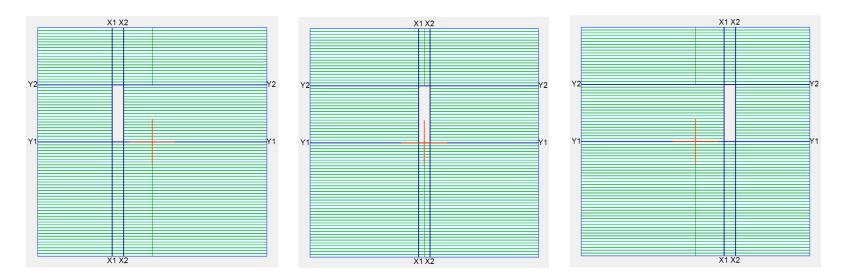
Relative Dose Factor – Using IQM

 RDF vs IQM Field Size Factor fitted with rational function

RDF obtained from converting IQM Field Size Factor

IQM RDF QA

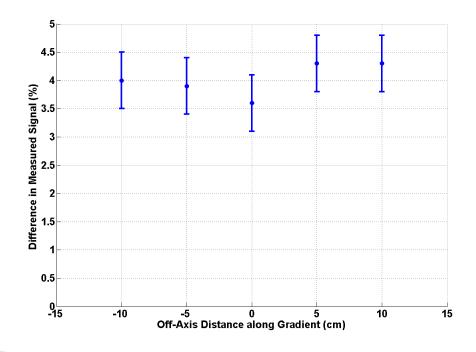
 Compare calculated RDF to measured RDF on different set of measurements


 Percentage Difference < 0.5% (ignoring 2x2)

Size of the field	Calculated RDF	Measured RDF	Percentage difference (%)
2 x 2	0.6176	0.6124	0.84
3 x 3	0.8123	0.8109	0.16
4 x 4	0.8721	0.8704	0.19
5 x 5	0.9052	0.9054	-0.02
6 x 6	0.9294	0.9303	-0.09
8 x 8	0.9677	0.9691	-0.15
10 x 10	0.9989	1.0000	-0.11
12 x 12	1.0255	1.0257	-0.01
15 x 15	1.0572	1.0559	0.12
20 x 20	1.0941	1.0933	0.08
25 x 25	1.1181	1.1199	-0.16
30 x 30	1.1348	1.1389	-0.36
35 x 35	1.1469	1.1526	-0.50
40 x 40	1.1547	1.1571	-0.21

- Beam Output
- Beam Symmetry
- Relative Dose Factor (RDF)
- MLC Calibration
- Output as Function of Dose Rate
- Dose Linearity
- Output as Function of Gantry Angles

MLC Calibration Constancy Check


- Picket-Fence type test
- > 2 x 10cm² fields at off-axis positions along the gradient

Normalized measurements checked for constancy

MLC Calibration Constancy Check

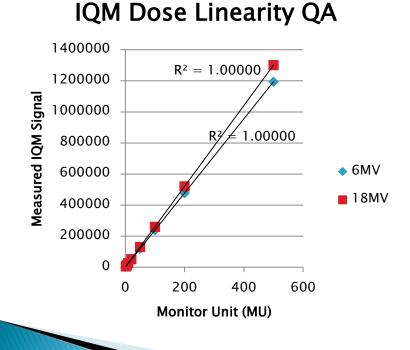
- Introduced 1mm shift of one MLC bank
- Margin of error 0.5% (2 standard deviation)
 - \rightarrow sensitive to change bigger than this

- Beam Output
- Beam Symmetry
- Relative Dose Factor (RDF)
- MLC Calibration

Output as Function of Dose Rate

- Dose Linearity
- Output as Function of Gantry Angles

Output as a function of Dose Rate


- IQM measurement compared with reference ionchamber measurement
- Normalized to measurement at 600MU/min
- Agree within around 0.5%

D/R	IQM Meas. (%)	Ion-chamber Meas. (%)	% Diff to 60	00MU/min
600	100.00	100.00	0.00	0.00
500	100.03	100.45	0.03	0.45
400	100.01	100.45	0.01	0.44
300	100.03	100.29	0.03	0.29
100	100.03	100.29	0.03	0.29
60	99.98	100.59	-0.02	0.59
40	99.97	100.51	-0.03	0.51
20	99.89	100.56	-0.11	0.56

- Beam Output
- Beam Symmetry
- Relative Dose Factor (RDF)
- MLC Calibration
- Output as Function of Dose Rate
- Dose Linearity
- Output as Function of Gantry Angles

Dose Linearity & Output as Function of Different Angles

Showed < 0.5% agreement to the reference ionchamber measurement

Angle	Difference from 180	
(degrees)	degree (%)	
180	0	
90	-0.1	
0	-0.1	
270	-0.2	
180	0.1	

Summary

IQM showed potential to be used for Linac QA

 Further work required to polish up procedures and tolerance levels

Summary – Potential Benefits

- Some QA can be done at different angles
- ► Ex)
 - Daily beam output at different gantry angles
 - Beam symmetry at different gantry angles

Summary – Potential Benefits

- Save time
 - Easily accessible
 - Single equipment
- Minimum user-interaction
 - multiple IQM QA tests done by an IMRT field
 - report results automatically to QA management system

QA can be done more frequently and cost efficiently

Easy to use

Acknowledgement

Dr. Mohammad Islam Bern Norrlinger Graham Wilson Dr. Robert Heaton Makan Farrokhkish Yinkun Wang

