

#### INTRODUCTION

Monitoring the beam energy of a photon beam is part of a routine QA program<sup>1</sup>. In order to establish meaningful tolerances for a given method it is important to know how sensitive it is to actual energy changes.

### AIM

To evaluate the sensitivity of different methods of measuring photon beam energy.

### METHOD

- Baseline scans for beam energy of a 6MV beam on an Elekta Versa HD accelerator were obtained using five methods.
- PTW Beamscan 3D scanner with PTW Semiflex 3D ionization chamber
- Daily QA3 (SunNuclear)
- IC Profiler (SunNuclear)
- PTW Farmer Chamber in plastic water
- IQM transmission detector (IRT Systems)
- Depth dose and profile scans at 90cm SSD were measured using a PTW Beamscan 3D scanner with a PTW Semiflex 3D ionization chamber.
- Measurements were then made using the Daily QA3, IC Profiler, a PTW Farmer chamber in plastic water, and the IQM transmission detector.
- The beam energy was then adjusted by approximately 0.5% and 1.0% and then back to the baseline energy making a total of 4 sets of measurements.
- Percent Depth Dose (PDD) at 10cm and 20cm depth was measured with 10x10cm<sup>2</sup>
- Off-Axis Ratio (OAR) was measured with 30x30cm<sup>2</sup> field size
- For the Daily QA3 only energy was evaluated
- For the IC Profiler, energy wedge was used to evaluate the energy. The OAR was evaluated as well.
- For the IQM, 30x30cm<sup>2</sup> and 2x2cm<sup>2</sup> were measured to get the ratio.
- For the farmer chamber in plastic water, the energy was evaluated using the ratio of measurement in depth of 5cm to 10cm and 15cm.

# Measurement of Photon Beam Energy Changes on an Elekta Versa HD using 5 methods

K.L. Yun<sup>1</sup>, J. Berzanske<sup>1</sup>, M. Goss<sup>1</sup>, S. Denhoff<sup>2</sup>, and D. Pavord<sup>1</sup>

- . Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, USA
- 2. Elekta, Sweden

## RESULTS

- PDD<sub>10</sub> was 66.17, 66.64, 67.05, and 65.96 after return to baseline.
- This shows that setting the same values on the linac did not return the to baseline. This was confirmed by all of the methods.
- PDD<sub>20</sub> was 37.85, 38.48, 39.02, and 37.9.
- The maximum Off-Axis-Ratio in the water tank was 1.040, 1.018, 1.005,
- The energy percentage from the Daily QA3 device was 2.52, 8.99, 15.7 These are percent difference from the baseline.
- The maximum OAR from the IC Profiler was 1.036, 1.022, 1.009, and 1.
- The energy from the IC Profiler using the energy wedge was 69.74, 70.0 70.02.
- The ratio of ionization chamber readings in the plastic water at 10cm an was 0.848, 0.85, 0.852, and 0.847.
- For 15cm and 5cm depth, it was 0.705, 0.709, 0.714, and 0.703.
- Using the ratio of the 30x30cm<sup>2</sup> and 2x2cm<sup>2</sup> field readings for the IQM ( values were 154.0, 150.4. 146.7, and 154.7. The ratio to 5x5cm field wa

# CONCLUSIONS

- The sensitivity of the 5 methods in detecting the energy change of a 6MV beam was evaluated.
- There was a wide variation among them and the appropriate tolerances for each method should be set based on these findings.
- The Daily QA3 device was very sensitive to energy change and tolerances should be set appropriately.
- The IQM device was approximately twice as sensitive as the other chamber methods.

| energy exactly              |                    |                                       | Water s                                          | scans   |                | DailyQA3                    | IC Profiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | Solid water          |                                     | IQM        |           |
|-----------------------------|--------------------|---------------------------------------|--------------------------------------------------|---------|----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-------------------------------------|------------|-----------|
| energy exactly              | Results            | D10cm                                 | D20cm                                            | D20/D10 | OAR            | Energy                      | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OAR                             | Ratio 10/5           | Ratio 15/5                          | Ratio 30/2 | Ratio 30/ |
| e energy exactly            | Baseline           | 66.17                                 | 37.85                                            | 0.572   | 104            | 0.0252                      | 69.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103.6                           | 0.848                | 0.705                               | 154        | 32.53     |
| e energy exactly            | ~0.5%              | 66.64                                 | 38.48                                            | 0.577   | 101.8          | 0.0899                      | 70.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.2                           | 0.85                 | 0.709                               | 150.4      | 31.84     |
|                             | ~1%                | 67.05                                 | 39.02                                            | 0.582   | 100.5          | 0.1577                      | 70.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.9                           | 0.852                | 0.714                               | 146.7      | 31.2      |
|                             | Return to baseline | 65.96                                 | 37.9                                             | 0.575   | 103.9          | 0.0223                      | 70.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103.5                           | 0.847                | 0.703                               | 154.7      | 32.67     |
|                             | Sensitivity        |                                       | Waters                                           | scans   |                | DailyQA3                    | IC P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rofiler                         | Solid                | water                               | IQ         | M         |
| , and 1.039.                |                    | D10cm                                 | D20cm                                            | D20/D10 | OAR            | Energy                      | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OAR                             | Ratio 10/5           | Ratio 15/5                          | Ratio 30/2 | Ratio 30/ |
| , and 2.23.                 | ~0.5%              | 0.71%                                 | 1.66%                                            | 0.95%   | -2.12%         | 256.75%                     | 0.39%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.35%                          | 0.25%                | 0.66%                               | -2.30%     | -2.10%    |
|                             | ~1%                | 1.33%                                 | 3.09%                                            | 1.74%   | -3.37%         | 525.79%                     | 1.26%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.61%                          | 0.51%                | 1.28%                               | -4.70%     | -4.10%    |
|                             | Return to baseline | -0.32%                                | 0.13%                                            | 0.45%   | -0.10%         | -11.51%                     | 0.40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.10%                          | -0.11%               | -0.23%                              | 0.50%      | 0.40%     |
| 70.62. and                  |                    |                                       |                                                  |         |                | ng the ba                   | sellne alt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ference (top                    | o) and the           | sensitivity                         | (bottom)   | •         |
| 70.62, and                  |                    |                                       |                                                  |         |                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ference (top                    | o) and the           | sensitivity                         | (bottom)   | •         |
| , 70.62, and                |                    |                                       |                                                  | Bend    | ing Coarse     | Bendir                      | ng Fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gun Currer                      | o) and the           | sensitivity                         | (bottom)   | •         |
| , 70.62, and<br>d 5cm depth |                    | Bas                                   | seline                                           | Bend    | ing Coarse     | Bendir                      | ng Fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gun Currer<br>7.54              | o) and the<br>ht Hum | sensitivity                         | (bottom)   | •         |
| , 70.62, and<br>I 5cm depth |                    | Bas<br>1st Co<br>(~ 0                 | seline<br>orrection<br>0.5%)                     | Bend    | 40<br>42       | Bendir<br>1.5               | sellne alfi<br>196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gun Currer<br>7.54<br>7.46      | o) and the<br>ht Hum | sensitivity                         | (bottom)   | •         |
| , 70.62, and<br>I 5cm depth |                    | Bas<br>1st Co<br>(~ (<br>2nd Co<br>(~ | seline<br>orrection<br>0.5%)<br>orrection<br>1%) | Bend    | 40<br>42<br>44 | Bendir<br>1.8<br>1.9<br>2.0 | selline difference of the selline difference | Gun Currer   7.54   7.46   7.45 | o) and the           | sensitivity<br>23.9<br>23.6<br>23.3 | (bottom)   | •         |



Allegheny Health Network

#### REFERENCES

1. Gao S, Balter PA, Rose M, Simon WE. A comparison of methods for monitoring photon beam energy constancy. Journal of applied clinical medical physics. 2016 Nov;17(6):242-53.

#### **CONTACT INFORMATION**

Email: Daniel.Pavord@ahn.org